M.Sc. projects

Student Projects in the LMTS – Fall 2023

If you are interested in a project, please contact the Ph.D. student or postdoc in charge of that project. The working languages in our group are English (primarily) and French.

For EPFL students:  Please note the LMTS is located in Neuchatel. Semester project students are expected to come to Neuchatel at least one day a week, while Master projects students are in Neuchâtel every day. Travel is reimbursed according to fixed HR rules.

For non-EPFL students, it might be possible to do your Master’s project at the EPFL, project duration is 6 months. You must have your own funding.

Instructions for projects in our lab

 Instructions for semester projects

–  Evaluation criteria

Student projects on the following topical areas (for complete descriptions please scroll on down)

  1. Soft Robotics and Haptics
  2. MEMS and Printed Microsystems

1. SOFT ROBOTICS AND HAPTICS

Soft robots are a new kind of robots made of elastomers. Most soft robots rely on fluidic actuators, due to their robustness, large deformations and versatility. Current fluidic actuators are driven by an external pump that pushes the fluid.
We are developing a novel class of electrically-driven fluidic actuators: fluidic muscles that contract and expand responding to an applied voltage. Applications are numerous, ranging from mobile soft robots to wearables.
The master project will be focused on developing of the electrostatic actuators in a multi-layer format.

Type: 
Master project
Period:
Fall 2023
Section(s)
MT, ME, MX
Type of work:
Design, fabricate and test a novel flexible artificial muscle
Requirements:
Interest for soft and non-linear materials, soft robots.
Subject(s):
Design, non-linear materials, soft robotics
Contact:
Dr. Amir Firouzeh

2. MEMS & PRINTED MICROSYSTEMS

Currently, wireless IoT RFID devices used for identification and sensing rely on some harmful components making their environmentally friendly disposal impossible after service life. In the frame of the SNF-Bridge project GreenSpack, we are developing eco-friendly RFID and NFC sensing tags made by the additive manufacturing of biodegradable materials on paper substrates. These tags can aim at identification of items or at the monitoring of perishable goods during their transport. At their end of life, these tags being developed could be recycled or safely disposed not being harmful to the environment.

In this student project, work will be performed on developing biodegradable RFID tags based on the printing of a biodegradable metal and adhesives on paper, with the silicon chip being the only non biodegradable component remaining. Depending on the interest of the student, the project can address the design and fabrication of RFID tag, more specifically looking at the printing of antenna, the assembly of the silicon chip using natural adhesives, their electrical interconnection using green conductive adhesive, and their encapsulation. It could also focus more on the characterisation of tags: looking at the performance of the printed antenna or at the biodegradation, recyclability of the components.

Type: ONLY for Master project
Period: Fall 2024 or Spring 2025
Section(s) MT, MX, EL
Type of work: Sensors design, fabrication, modelling, and characterisation
Requirements: Interest in experimental work on sensing and green electronics
Subject(s): Printed biodegradable electronics, environmental sensing, RF tags
Contact: Nicolas Fumeaux & Danick Briand

We are developing printed single use biosensors that can be disposed in an environmental friendly way by using biodegradable and biocompatible materials. These radio-frequency (RF) sensors are implemented using a chipless configuration (no silicon chip) and are bio-functionalised for the detection of relevant physiological biomarkers in different body fluids, i.e blood, saliva, sweat.

The technology platform is composed of a zinc biodegradable conductive ink that can be patterned to form the RF transducing element on cellulosic (paper) or bio-polymeric substrates. A specific bio-functionalisation needs to be applied for the selective analyte detection. The goal of this project is to apply the technology available to develop eco-friendly disposable biosensors.

Different aspects of the sensor’s development could be addressed in the frame of a semester or master project; Design and fabrication by printing of the transducers on eco-friendly substrates, Bio-functionalisation of the transducers for target analytes, Characterisation of the biosensors, RF design and read-out for a wireless implementation.

Type: Semester or Master project
Period: NOT AVAILABLE
Section(s) MT, MX, EL, LS
Type of work: Design, sensor fabrication, and characterization
Requirements: Interest in sensors, biofunctionalisation and printed electronics
Subject(s): Eco-friendly disposable biosensor
Contact: Danick Briand

Bioresorbable materials, materials that can safely dissolve and be metabolized in the body, have recently gained interest for the development of medical implants for monitoring, stimulation or regeneration. Indeed, in certain cases, it is desirable for an implant to have only transient operation and disappear in time, for example for post-operative monitoring. In this project, we aim to develop smart transient implants made of soft and conformable materials, to sense physiological signals and detect bioanalytes. To this end, we apply additive manufacturing techniques, i.e. printing, to pattern functional materials, for their processing at low temperature and make the production of personalized implants possible, to address patient-specific needs.

We are currently developing an additive manufacturing platform to produce functional transient electronic devices. The project that is proposed entails the development of biocompatible sensors to detect physiological signals (temperature, pressure, ions and metabolytes concentrations) on degradable substrates. Depending on the interest of the student, focus can be given to materials and printing development for bioresorbable electically films and substrates, fabrication and characterization of electronic and sensing transient devices, design and architectures for deformable implants and their mechanical testing.

Type: Semester or Master project
Period: NOT AVAILABLE
Section(s) MT, MX, El, ME
Type of work: Experimental: device design, fab and characterisation
Requirements: Interest in additive manufacturing/printing, biomedical implants, transient electronics
Subject(s): Printed electrochemical transistors for biosensing
Contact: Nicolas Fumeaux & Danick Briand

This project consists in the development of flexible and printed biosensors that can be easily interfaced with bio-fluids. These will be fabricated exploiting state-of-the-art printing technologies such as inkjet and aerosol jet printing. The project focuses on the fabrication of highly sensitive biosensors named organic electrochemical transistors (OECTs), with specific bio-functionalization (such as enzymes and antibodies) for achieving selectivity in the detection. OECTs are three terminal devices, similar to conventional transistors, with source, drain, gate electrodes, and an organic channel (such as PEDOT:PSS) between source and drain. For operating, an electrolyte solution connecting the gate and the channel should be present. Once a potential between the gate and the source is applied, the current passing in the organic layer is modulated. Developing OECTs on flexible substrates are highly demanding for wearable and implantable biomedical applications. Bio-functionalization of the sensors will be performed for the detection of different biomarkers relevant for health-care and sport applications, such as glucose, lactate, and creatinine. The printed transistors will be tested electrically in presence of the analyte to be detected in solution.

Type: Semester or Master project
Period: NOT AVAILABLE
Section(s) MT, MX, EL, LS
Type of work: Printing of flexible sensors, their chemical functionalization and testing
Requirements: Interest for biosensors and printing
Subject(s): Printed electrochemical transistors for biosensing
Contact: Danick Briand